Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Precise modulation of excitable tissues—including neurons and cardiomyocytes—is essential for both understanding physiological functions and developing advanced therapies for neurological and cardiac disorders. Conventional modulation techniques such as electrical stimulation, pharmacological intervention, and optogenetics, face limitations in terms of invasiveness, spatiotemporal resolution, and/or requirement for genetic modulation. Optoelectronic interfaces based on light‐matter interaction have emerged as promising alternatives. These platforms offer wireless, nongenetic modulation capabilities with high spatiotemporal resolution and minimal invasiveness and risks of infection. Here, a summary of recent advances in nongenetic optoelectronic modulation strategies is presented. Aspects such as material selection and processing, device designs, working principles, and fabrication techniques are discussed. Then, key characterization methodologies, including benchtop assessments and validation within the living systems are discussed. Alongside the discussion, representative applications across in vitro and in vivo models of cardiac and central/peripheral nervous systems are highlighted. Finally, future directions and clinical opportunities, aiming to provide a thorough reference for the continued development of this field for both fundamental research and next‐generation therapeutic applications are explored.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Human–machine interfaces have received significant attention for their potential in VR/AR. This review summarizes recent progress in simulating physical and chemical sensations for enhancing eating experiences by utilizing wearable electroncis.more » « lessFree, publicly-accessible full text available September 15, 2026
-
Abstract Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra‐synaptic paths highlights the importance of the real‐time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co‐design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio‐integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.more » « less
An official website of the United States government
